Spermatozoal Traits and Sperm Competition in Atlantic Salmon Relative Sperm Velocity Is the Primary Determinant of Fertilization Success
نویسندگان
چکیده
Sperm competition occurs when sperm from more than one male compete for fertilizations. This form of post-copulatory sexual selection is recognized as a significant and widespread force in the evolution of male reproductive biology and as a key determinant of differential male reproductive success. Despite its importance, however, detailed mechanisms of sperm competition at the gamete level remain poorly understood. Here, we use natural variation in spermatozoal traits among wild Atlantic salmon (Salmo salar), a species naturally adapted to sperm competition, to examine how the relative influences of sperm (i) number, (ii) velocity, (iii) longevity, and (iv) total length determine sperm competition success. Atlantic salmon fertilize externally, and we were therefore able to conduct controlled in vitro fertilization competitions while concurrently measuring spermatozoal traits within the aqueous micro-environment to which salmon gametes are naturally adapted. Microsatellite DNA fingerprinting revealed that a male's relative sperm velocity was the primary determinant of sperm competition success. There was no significant relationship between fertilization success and either relative sperm number or total length; sperm longevity showed an inverse relationship with competition success. These relationships were consistent for two experimental repeats of the in vitro fertilization competitions. Our results therefore show, under the natural microenvironment for salmon gametes, that relative sperm velocity is a key spermatozoal component for sperm competition success. Atlantic salmon sperm can be considered to enter a competition analogous to a race in which the fastest sperm have the highest probability of success.
منابع مشابه
Atlantic salmon eggs favour sperm in competition that have similar major histocompatibility alleles
Polyandry and post-copulatory sexual selection provide opportunities for the evolution of female differential sperm selection. Here, we examined the influence of variation in major histocompatibility (MH) class I allelic composition upon sperm competition dynamics in Atlantic salmon. We ran in vitro fertilization competitions that mimicked the gametic microenvironment, and replicated a paired-m...
متن کاملSperm Swimming Velocity Predicts Competitive Fertilization Success in the Green Swordtail Xiphophorus helleri
Sperm competition is expected to favour the evolution of traits that influence the performance of sperm when they compete to fertilize a female's eggs. While there is considerable evidence that selection favours increases in sperm numbers, much less is known about how sperm quality contributes towards competitive fertilization success. Here, we determine whether variation in sperm quality influ...
متن کاملLong sperm fertilize more eggs in a bird
Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the...
متن کاملDelineating the roles of males and females in sperm competition.
Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha, a species in which ovarian fluid...
متن کاملNo evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.
Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004